我们研究了覆盖的阶段 - 避免多个代理的动态游戏,其中多个代理相互作用,并且每种希望满足不同的目标条件,同时避免失败状态。 Reach-避免游戏通常用于表达移动机器人运动计划中发现的安全关键最优控制问题。虽然这些运动计划问题存在各种方法,但我们专注于找到时间一致的解决方案,其中计划未来的运动仍然是最佳的,尽管先前的次优行动。虽然摘要,时间一致性封装了一个非常理想的财产:即使机器人早期从计划发出的机器人的运动发散,即,由于例如内在的动态不确定性或外在环境干扰,即使机器人的运动分歧,时间一致的运动计划也保持最佳。我们的主要贡献是一种计算 - 避免多种代理的算法算法,避免呈现时间一致的解决方案。我们展示了我们在两位和三位玩家模拟驾驶场景中的方法,其中我们的方法为所有代理商提供了安全控制策略。
translated by 谷歌翻译
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
This paper aims to improve the Warping Planer Object Detection Network (WPOD-Net) using feature engineering to increase accuracy. What problems are solved using the Warping Object Detection Network using feature engineering? More specifically, we think that it makes sense to add knowledge about edges in the image to enhance the information for determining the license plate contour of the original WPOD-Net model. The Sobel filter has been selected experimentally and acts as a Convolutional Neural Network layer, the edge information is combined with the old information of the original network to create the final embedding vector. The proposed model was compared with the original model on a set of data that we collected for evaluation. The results are evaluated through the Quadrilateral Intersection over Union value and demonstrate that the model has a significant improvement in performance.
translated by 谷歌翻译
Non-invasive prostate cancer detection from MRI has the potential to revolutionize patient care by providing early detection of clinically-significant disease (ISUP grade group >= 2), but has thus far shown limited positive predictive value. To address this, we present an MRI-based deep learning method for predicting clinically significant prostate cancer applicable to a patient population with subsequent ground truth biopsy results ranging from benign pathology to ISUP grade group~5. Specifically, we demonstrate that mixed supervision via diverse histopathological ground truth improves classification performance despite the cost of reduced concordance with image-based segmentation. That is, where prior approaches have utilized pathology results as ground truth derived from targeted biopsies and whole-mount prostatectomy to strongly supervise the localization of clinically significant cancer, our approach also utilizes weak supervision signals extracted from nontargeted systematic biopsies with regional localization to improve overall performance. Our key innovation is performing regression by distribution rather than simply by value, enabling use of additional pathology findings traditionally ignored by deep learning strategies. We evaluated our model on a dataset of 973 (testing n=160) multi-parametric prostate MRI exams collected at UCSF from 2015-2018 followed by MRI/ultrasound fusion (targeted) biopsy and systematic (nontargeted) biopsy of the prostate gland, demonstrating that deep networks trained with mixed supervision of histopathology can significantly exceed the performance of the Prostate Imaging-Reporting and Data System (PI-RADS) clinical standard for prostate MRI interpretation.
translated by 谷歌翻译
Monte-Carlo Tree Search (MCTS) is an adversarial search paradigm that first found prominence with its success in the domain of computer Go. Early theoretical work established the game-theoretic soundness and convergence bounds for Upper Confidence bounds applied to Trees (UCT), the most popular instantiation of MCTS; however, there remain notable gaps in our understanding of how UCT behaves in practice. In this work, we address one such gap by considering the question of whether UCT can exhibit lookahead pathology -- a paradoxical phenomenon first observed in Minimax search where greater search effort leads to worse decision-making. We introduce a novel family of synthetic games that offer rich modeling possibilities while remaining amenable to mathematical analysis. Our theoretical and experimental results suggest that UCT is indeed susceptible to pathological behavior in a range of games drawn from this family.
translated by 谷歌翻译
The deployment of robots in uncontrolled environments requires them to operate robustly under previously unseen scenarios, like irregular terrain and wind conditions. Unfortunately, while rigorous safety frameworks from robust optimal control theory scale poorly to high-dimensional nonlinear dynamics, control policies computed by more tractable "deep" methods lack guarantees and tend to exhibit little robustness to uncertain operating conditions. This work introduces a novel approach enabling scalable synthesis of robust safety-preserving controllers for robotic systems with general nonlinear dynamics subject to bounded modeling error by combining game-theoretic safety analysis with adversarial reinforcement learning in simulation. Following a soft actor-critic scheme, a safety-seeking fallback policy is co-trained with an adversarial "disturbance" agent that aims to invoke the worst-case realization of model error and training-to-deployment discrepancy allowed by the designer's uncertainty. While the learned control policy does not intrinsically guarantee safety, it is used to construct a real-time safety filter (or shield) with robust safety guarantees based on forward reachability rollouts. This shield can be used in conjunction with a safety-agnostic control policy, precluding any task-driven actions that could result in loss of safety. We evaluate our learning-based safety approach in a 5D race car simulator, compare the learned safety policy to the numerically obtained optimal solution, and empirically validate the robust safety guarantee of our proposed safety shield against worst-case model discrepancy.
translated by 谷歌翻译
Collecting large-scale medical datasets with fully annotated samples for training of deep networks is prohibitively expensive, especially for 3D volume data. Recent breakthroughs in self-supervised learning (SSL) offer the ability to overcome the lack of labeled training samples by learning feature representations from unlabeled data. However, most current SSL techniques in the medical field have been designed for either 2D images or 3D volumes. In practice, this restricts the capability to fully leverage unlabeled data from numerous sources, which may include both 2D and 3D data. Additionally, the use of these pre-trained networks is constrained to downstream tasks with compatible data dimensions. In this paper, we propose a novel framework for unsupervised joint learning on 2D and 3D data modalities. Given a set of 2D images or 2D slices extracted from 3D volumes, we construct an SSL task based on a 2D contrastive clustering problem for distinct classes. The 3D volumes are exploited by computing vectored embedding at each slice and then assembling a holistic feature through deformable self-attention mechanisms in Transformer, allowing incorporating long-range dependencies between slices inside 3D volumes. These holistic features are further utilized to define a novel 3D clustering agreement-based SSL task and masking embedding prediction inspired by pre-trained language models. Experiments on downstream tasks, such as 3D brain segmentation, lung nodule detection, 3D heart structures segmentation, and abnormal chest X-ray detection, demonstrate the effectiveness of our joint 2D and 3D SSL approach. We improve plain 2D Deep-ClusterV2 and SwAV by a significant margin and also surpass various modern 2D and 3D SSL approaches.
translated by 谷歌翻译
The ongoing transition from a linear (produce-use-dispose) to a circular economy poses significant challenges to current state-of-the-art information and communication technologies. In particular, the derivation of integrated, high-level views on material, process, and product streams from (real-time) data produced along value chains is challenging for several reasons. Most importantly, sufficiently rich data is often available yet not shared across company borders because of privacy concerns which make it impossible to build integrated process models that capture the interrelations between input materials, process parameters, and key performance indicators along value chains. In the current contribution, we propose a privacy-preserving, federated multivariate statistical process control (FedMSPC) framework based on Federated Principal Component Analysis (PCA) and Secure Multiparty Computation to foster the incentive for closer collaboration of stakeholders along value chains. We tested our approach on two industrial benchmark data sets - SECOM and ST-AWFD. Our empirical results demonstrate the superior fault detection capability of the proposed approach compared to standard, single-party (multiway) PCA. Furthermore, we showcase the possibility of our framework to provide privacy-preserving fault diagnosis to each data holder in the value chain to underpin the benefits of secure data sharing and federated process modeling.
translated by 谷歌翻译
这项研究介绍了我们对越南语言和语音处理任务(VLSP)挑战2021的文本处理任务的医疗保健领域的自动越南图像字幕的方法作为编码器的体系结构和长期的短期内存(LSTM)作为解码器生成句子。这些模型在不同的数据集中表现出色。我们提出的模型还具有编码器和一个解码器,但是我们在编码器中使用了SWIN变压器,LSTM与解码器中的注意模块结合在一起。该研究介绍了我们在比赛期间使用的培训实验和技术。我们的模型在vietcap4h数据集上达到了0.293的BLEU4分数,并且该分数在私人排行榜上排名3 $^{rd} $。我们的代码可以在\ url {https://git.io/jddjm}上找到。
translated by 谷歌翻译
无人驾驶汽车(UAV)在许多领域都受雇于摄影,紧急,娱乐,国防,农业,林业,采矿和建筑。在过去的十年中,无人机技术在许多施工项目阶段中找到了应用程序,从现场映射,进度监控,建筑物检查,损坏评估和材料交付等等。尽管已经对无人机在各种施工相关的过程中的优势进行了广泛的研究,但关于提高任务能力和效率的无人机协作的研究仍然很少。本文提出了一种基于塔格狩猎游戏和粒子群优化(PSO)的多个无人机的新合作路径计划算法。首先,定义了每个无人机的成本函数,并包含多个目标和约束。然后,开发了无人机游戏框架,以将多功能路径计划制定到寻找回报优势均衡的问题。接下来,提出了基于PSO的算法来获得无人机的最佳路径。由三个无人机检查的大型建筑工地的仿真结果表明,在检查任务期间,提出的算法在为无人机形成的可行和高效飞行路径生成可行,高效的飞行路径上的有效性。
translated by 谷歌翻译